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ABSTRACT 

Osteoporosis, associated with reduced bone mineral density and structural 

degeneration, greatly increases the risk of fragility fracture. Magnetic resonance imaging 

(MRI) has been applied to central skeletal sites including the proximal femur due to its 

non-ionizing radiation. A major challenge of volumetric bone imaging of the hip is the 

selection of regions of interest (ROIs) for computation of regional bone measurements. To 

address this issue, an MRI-based active shape model (ASM) of the human proximal femur 

is applied to automatically generate ROIs. The challenge in developing the ASM for a 

complex three-dimensional (3-D) shape lies in determining a large number of anatomically 

consistent landmarks for a set of training shapes. This thesis proposes a new method of 

generating the proximal femur ASM, where two types of landmarks, namely fiducial and 

secondary landmarks, are used. The method consists of—(1) segmentation of the proximal 

femur bone volume, (2) smoothing the bone surface, (3) drawing fiducial landmark lines 

on training shapes, (4) drawing secondary landmarks on a reference shape, (5) landmark 

mesh generation on the reference shape using both fiducial and secondary landmarks, (6) 

generation of secondary landmarks on other training shapes using the correspondence of 

fiducial landmarks and an elastic deformation of the landmark mesh, (7) computation of 

the active shape model. A proximal femur ASM has been developed using hip MR scans 

of 45 post-menopausal women. The results of secondary landmark generation were visually 

satisfactory, and no topology violation or notable geometric distortion artifacts were 

observed. Performance of the method was examined in terms of shape representation errors 

in a leave-one-out test. The mean and standard deviation of leave-one-out shape 

representation errors were 1.40mm and 0.37mm respectively. The experimental results 



www.manaraa.com

 

 iv  

suggest that the framework of fiducial and secondary landmarks allows reliable 

computation of statistical shape models for complex 3-D anatomic structures.  
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PUBLIC ABSTRACT 

Osteoporosis poses a high risk of fragility fracture for people, and hip is one of the 

most common places where it occurs. Despite the fact that magnetic resonance imaging 

(MRI) has been applied to central skeletal cites for clinical analysis, a major challenge for 

computation of regional bone measurements is the selection of regions of interest (ROIs). 

To automatically generate ROIs, an MRI-based active shape model (ASM) of the human 

proximal femur is applied. The fundamental work of building an ASM is to determine a 

set of landmarks. For a complex three-dimensional (3-D) shape like human proximal 

femur, it’s not easy to locate a large number of anatomical consistent landmarks. In this 

thesis, a new method is proposed to generate the proximal femur ASM, where two types 

of landmarks, namely fiducial and secondary landmarks, are used. The main idea of this 

method is to deform the secondary landmarks of a reference shape to the corresponding 

surface of target shapes by an elastic deformation model, given the relationship of fiducial 

landmarks between the reference shape and target shapes. Then develop an ASM based on 

all training shapes. Hip MR scans of 45 post-menopausal women were applied in the 

experiment. It was observed that secondary landmarks generated from this method were 

visually satisfactory, and no topology violation or notable geometric distortion artifacts 

existed. The mean and standard deviation of leave-one-out shape representation errors were 

1.40mm and 0.37mm respectively, demonstrating that the framework of fiducial and 

secondary landmarks is reliable for computation of complex 3-D shape models. 
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CHAPTER 1 
INTRODUCTION  

1.1 Background and Motivation 

Osteoporosis, associated with reduced bone mineral density (BMD) and structural 

degeneration of cortical and trabecular bone, greatly increases the risk of fragility fracture 

([1]–[3]). Nearly, 40% of women and 13% of men suffer a fragility fracture in their 

lifetimes ([4]). The continued rise in life expectancy is predicted to increase fracture 

incidence by three-fold ([5]). Osteoporotic fractures are one of the most common causes of 

disability, and a major contributor to medical costs ([6]). Osteoporotic hip fractures are 

especially devastating, reducing life expectancy by 10-20% ([7]), and more than three-

quarters of all hip fractures occur in women ([6]).  

At present, dual-energy X-ray absorptiometry (DXA) measured areal BMD is used 

to diagnose osteoporosis. Lately, volumetric imaging including magnetic resonance 

imaging (MRI) ([8]–[11]), high-resolution peripheral quantitative computed tomography 

(HR-pQCT) ([12]), and multi-row detector CT (MDCT) imaging ([13]) have drawn interest 

to measure both bone density and structure. Among these modalities, MRI and MDCT are 

applicable to central skeletal sites including the proximal femur.  

Different groups have applied various methods for topologic and geometric 

characterization of TB microarchitecture ([14]–[17]). Parfitt et al. ([14]) proposed a parallel 

interconnected trabecular plate model computing TB area and volume fractions, and 

trabecular spacing and number. Vesterby et al. ([15]) introduced the star volume measure, 

which is the average volume of an object region that can be seen from a point inside that 

region unobscured in all directions. Hildebrand et al. ([16]) formulated the 3-D structure 

model index, a pseudo-measure of global plate-to-rod ratio, based on the observation that, 
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for plate-like structure, the rate of volume change with respect to thickness is different from 

that for rod-like structures. Feldkamp et al. ([17]) expressed the makeup of TB networks 

in terms of topological entities such as the 3-D Euler number.  

There is histologic evidence confirming the relationship between the gradual 

conversion of trabecular plates to rods and increased fracture-risk ([18], [19]). Kleerekoper 

et al. ([18]) observed lower mean TB plate density among individuals with osteoporotic 

vertebral compression fractures compared with BMD-matched controls without fractures.  

Recker ([19]) reported reduced trabecular connectivity among patients with vertebral crush 

fractures as compared to healthy controls with matching TB volume. Recent advancement 

in digital topology and geometry allows fully automated characterization of individual 

trabecular plates and rods ([20]–[27]), distinguishing between longitudinal and transverse 

trabecular structures ([13]), and accurately computing trabecular thickness, spacing ([28]–

[31]), and orientation ([13], [32]). 

Among others, a major challenge with hip bone image analysis is the selection of 

regions of interest (ROIs) for regional measurements of bone quality. Toward this goal, we 

develop an active shape model (ASM) ([33]) of the human proximal femur ([34]), which 

will be used to automatically generate consistent ROIs. Also, the ASM will be useful to 

define shape and geometric measures of the femur, and their relationships with fracture risk 

may be investigated.  

Major challenges in developing the ASM of a complex three-dimensional (3-D) 

shape lie in determining a large number of anatomically consistent landmarks in the 

training shapes. Although, several research efforts ([35]–[37]) have been made along this 

direction, the challenges are not yet met. Here, a new method of generating active shape 
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model of a given 3-D anatomic shape is proposed, where two different types of landmarks, 

namely fiducial and secondary landmarks, are used. On a 3-D anatomic shape, often, 

several lines can be defined and manually located with high confidence and reproducibility. 

Such lines will be used to define fiducial landmarks. Using fiducial landmarks, a large 

number of secondary landmarks will be generated using a fully automated computational 

model.  

1.2 Research Aims 

To achieve the overall goals discussed in the previous paragraph, the follow specific 

aims were defined for my master’s thesis research. 

Aim 1: Development of a shape-based morphological smoothing algorithm and apply it on 

the human proximal femur volume manually segmented from hip MRI. 

a) Compute signed distance transform from the manually segmented proximal femur 

bone surface. 

b) Apply smoothing on the signed distance transform field using a Gaussian 

smoothing kernel. 

c) Generate the smooth femur bone volume using a threshold at zero value on the 

smooth signed distance transform field. 

Aim 2: Generation of fiducial landmarks for all training shapes and establishment of a 

complete set of landmarks for a reference shape. 

a) Define an anatomic landmark system for the human proximal femur bone surface. 

b) Draw fiducial landmarks on the surface of all femur bone shapes.  

c) Draw secondary landmarks on a randomly selected shape, referred to as the 

reference shape. 
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d) Build the complete landmark mesh for the reference shape. 

Aim 3: Deformation of the reference landmark mesh on to the surface of individual training 

femur bone shapes using fiducial landmark correspondence.  

a) Align pose factors of the reference landmark mesh to the target training shape using 

fiducial landmark correspondence. 

b) Iteratively deform reference fiducial landmarks to their target locations on the target 

bone surface. 

c) Iteratively deform the reference secondary landmark mesh onto the target bone 

surface using a new geodesic elastic deformation algorithm. 

Aim 4: Development and evaluation of an ASM using the complete landmarks of all 

training shapes. 

1.3 Thesis Outline 

In Chapter 2, the method to smooth MRI of human proximal femur will be 

introduced, also the protocol of constructing a landmark system will be explained in detail, 

the elastic deformation method will be illustrated, and finally the topology condition will 

be given. In Chapter 3, experiment data and results will be shown. The result of secondary 

landmark generation, as well as the performance of the ASM by leave-one-out test will be 

demonstrated. In Chapter 4, the conclusion as well as further discussion is given. Also, 

long term goals of the related research and future research directions are outlined in Chapter 

4. 
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CHAPTER 2 
METHODS  

In this chapter, a new framework for computing an MRI-based ASM of the human 

proximal femur using the notions of fiducial and secondary landmarks ([34]) is presented. 

Although, the framework is applicable to any 3-D shapes, some of the steps of this method 

were designed to meet the specific challenges of generating MRI-based femur ASM. 

Following the guidelines by Cootes et al. ([33]), a shape instance 𝐱" is represented as a 

vector defining an ordered sequence of 𝑛 landmark points, i.e. 𝐱" =

%𝑥",(, 𝑦",(, 𝑧",(,⋯ , 𝑥",,, 𝑦",,, 𝑧",,-
.
	. The generation of an active shape model requires a set 

of training shape instances derived from a shape family, e.g., the MRI-based human 

proximal femur bone. For the purpose of training, proximal femur bone surface of 

individual subjects is segmented from MRI. However, the most critical step in the training 

phase is to locate a large number of landmark points at anatomically consistent locations 

of individual bone surfaces. The complexity of this step is further enhanced for complex 3-

D shapes such as the human proximal femur. A framework to automatically locate the 

individual landmarks using the correspondence of a significantly reduced number of 

anatomic features, which can be reliably and reproducibly located on individual femur 

shapes, is proposed. Such a reliable anatomic feature will be referred to as a “fiducial 

landmark line.” The idea is to use the correspondence of fiducial landmark lines to warp a 

reference set of a large number of secondary landmark points on to a given training shape; 

the reference set of secondary landmark points is defined only once on one reference bone 

shape. Based on this principle, the method of computing the MRI-based femur ASM is 

accomplished in the following steps—(1) segmentation ([38], [39]) of the femur bone 

volume; (2) smoothing of the bone surface; (3) drawing of the fiducial landmark lines on 
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each training shape; (4) drawing of the secondary landmarks on a reference shape; (5) 

landmark mesh generation on the reference bone shape using both fiducial and secondary 

landmarks; (6) generation of the secondary landmarks on other training shapes using the 

correspondence of fiducial landmarks and an elastic landmark mesh deformation; (7) 

computation of the active shape model using fiducial and secondary landmarks; and (8) 

validation. After building the active shape model, it will be applied to search the shape in 

image-frame space, for the purpose of landmark localization, or segmentation. In the rest 

of this chapter, we describe the theory and algorithms for each of the above steps.  

2.1 Segmentation and Smoothing of the MRI-Based Femur Bone Surface 

The femur bone boundary was manually traced from MR images under the 

supervision of an expert radiologist on each axial image slice (Figure 1(a)) using the 

Firevoxel (https://wp.nyu.edu/firevoxel/) graphical tool. The segmentation result of a 

proximal femur shape is shown in Figure 1(b). Due to the limited image resolution of the 

hip MRI and slice-by-slice approach of manual outlining, the segmented femur bone 

suffered from digital staircase artifacts; see Figure 1(b). It is important to eliminate such 

artifacts before drawing the landmark lines on the femur surface because such irregularities 

may add artifactual variabilities in the computed ASM. A new algorithm to smooth a digital 

bone surface is introduced.  

The new smoothing algorithm is developed along the principle of shape-based 

interpolation ([40]). First, a signed distance transform is computed such that its magnitude 

represents the distance from the femur surface, while its sign indicates whether a voxel is 

inside (positive) or outside (negative) the femur volume. Next, a linear interpolation of the 

signed distance transform field is applied to generate a high-resolution isotropic image, 
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which is followed by a smoothing step using a Gaussian smoothing kernel. Finally, the 

high-resolution femur bone volume with a smooth surface is computed by thresholding the 

smooth distance field at ‘0’. This smoothing algorithm is referred as a morphologic 

smoothing algorithm. The result of morphologic smoothing of the femur bone surface of 

Figure 1(b) is shown in Figure 1(c). For all subsequent steps, high-resolution smooth femur 

bone surfaces are used to generate the femur ASM. 

 

Figure 1. Illustration of MRI-based human proximal femur bone shape.  (a) An axial image 

slice from a hip MR image. The femur bone boundary was manually traced (red line) 

through the graphical user interface supported by the Firevoxel software tool 

(https://wp.nyu.edu/firevoxel/). (b) Segmented femur volume using manual outlining of 

the femur bone boundary on individual axial image slices. (c) Femur bone surface after 

applying the morphologic smoothing algorithm. 

2.2 Development of Landmark Systems 

Generating landmarks on individual training shapes is accomplished in two steps 

— (1) location of fiducial landmarks based on reliable anatomic features and (2) generation 

of secondary landmarks based on the correspondence of fiducial landmarks. The fiducial 
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landmarks are manually drawn on individual training bone surfaces as per a pre-defined 

reference of anatomic fiducial lines (blue lines in Figure 2). A prototype of secondary 

landmarks is manually defined on a reference shape, which is warped onto individual 

training shapes using the correspondence of fiducial landmarks.  

2.2.1 Fiducial Landmark System 

The fiducial lines are defined based on the anatomic features of the shape family. 

Also, it is required that the fiducial lines divide the entire bone surface into multiple simply-

connected regions ([41]). Initially, a fiducial line is drawn as a curve on the bone surface. 

A fiducial landmark line (or, ‘landmark line’ in short) is generated by computing a 

sequence of a predefined number of equidistant fiducial landmarks on the fiducial line. Let 

us assume that a shape is represented by 𝑙 fiducial landmark lines 𝐿(, 𝐿2,⋯ , 𝐿3 and 

generating 𝑟 regions 𝑅(, 𝑅2,⋯ , 𝑅6. It may be noted that a region 𝑅 is bounded by a set of 

landmark lines; let Γ(𝑅") denote the set of bounding fiducial landmark lines for the region 

𝑅". A landmark line 𝐿" is a sequence of fiducial landmarks 〈𝐟(, 𝐟2,⋯ , 𝐟,<〉, where 𝐟( and 𝐟,< 

are end-landmarks. In this thesis, lowercase bold-face letters are used to denote a point or 

landmark. To ensure that the landmark lines divide the bone surface into topologically 

consistent regions, it is required that two landmark lines 𝐿" and 𝐿> intersect only at their 

end-landmarks, and an end-landmark is shared by at least three landmark lines. 

Fiducial lines and landmarks on a specific training sample are illustrated in Figure 

2. Fiducial lines were manually drawn on an MRI-derived smooth proximal femur bone 

surface to denote clinically important anatomic regions including the femoral head, neck, 

greater trochanter, and intertrochanteric region, which correspond to the most common 

locations of osteoporotic fractures in the proximal femur. Fiducial lines were also placed 
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to divide complex regions into relatively simpler sub-regions facilitating robust elastic 

deformation during the generation of secondary landmarks. Fiducial landmarks were drawn 

on individual training shapes using a custom designed graphical user interface (GUI) 

developed in our laboratory to interactively locate fiducial landmark lines on the femur 

bone surface. Conventional GUI systems provide graphical interface functions to 

manipulate points, lines, and curves on a 2-D plane. Our custom designed GUI system, 

called a geodesic editor ([42]), enables a user to directly interact on a geodesic surface 

facilitating landmark location on anatomic shapes. Also, the GUI facilitates the landmark 

generation process by assigning an identification number to each fiducial landmark line so 

that the correspondence of landmark lines among individual training shapes are maintained. 

Finally, the fiducial landmarks (points) are generated by uniformly sampling a predefined 

number of points on each fiducial line.  

 

Figure 2. Illustration of fiducial lines (blue) and landmarks (red) on a specific femur bone 

training shape generated from a hip MRI.  Fiducial landmarks on the same femur shape are 

shown from three different viewing angles. 

(a) (b) (c)
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2.2.2 Secondary Landmark System 

A prototype of secondary landmarks is generated on a specific training shape 

referred to as the reference shape. The idea here is to warp the secondary landmarks on to 

individual training shapes using the correspondence of fiducial landmarks of the reference 

and specific training shapes. This step is crucial for reducing user time and more 

importantly for avoiding human errors in placing a large number of landmarks at 

anatomically consistent locations.  

 

Figure 3. Illustrations of secondary landmarks. Manually added secondary landmarks 

(green dots) on the reference training shape are shown along with the landmark mesh. 

Fiducial landmarks are shown in red, while the edges on a fiducial landmark line are shown 

in green.  

A random shape from the training data set is chosen as the reference shape. The 

secondary landmarks are manually drawn on the reference shape at a quasi-uniform 

distribution. Finally, the landmark mesh involving both fiducial and secondary landmarks 

is computed using the geodesic Voronoi neighborhood and Delaunay triangulation 

approaches ([41], [43]). The secondary landmarks and the landmark mesh on the reference 

(a) (b) (c)
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training shape are shown in Figure 3. Note that a secondary landmark 𝒔 belong to a specific 

region, say 𝑅"; we will refer 𝑅" as the parent region of 𝒔. 

2.3 Deformation of Reference Landmark Mesh on Individual Training Shapes 

As mentioned earlier, the secondary landmarks are not manually located on 

individual training shapes. Instead, the secondary landmarks are computationally warped 

on a target training shape using the correspondence of fiducial landmarks and a geodesic 

spring mesh deformation method. In this section, it will be explained in detail about how 

to deform the prototype secondary landmarks of the reference training shape on to a target 

training shape. The method begins with an affine transformation on the prototype 

secondary landmarks, which is computed using the Procrustes analysis ([44]) and the 

correspondence among the fiducial landmarks of the reference and target training shapes. 

The results of the optimum affine transformation on the prototype secondary landmarks is 

shown in Figure 4.  

As observed from the figure, the residual distance between corresponding fiducial 

landmarks of the reference and target shapes are small for some regions, while the distance 

is large for certain regions. Also, the distance of secondary landmarks from the target bone 

surface may be large. The final alignment of the fiducial landmarks of reference and target 

training shapes and the mapping of the secondary landmarks on to the surface of the target 

shape is accomplished using a new geodesic spring mesh deformation method, where the 

secondary landmarks deform under two forces — (1) spring-mesh force and (2) surface-

distance force.  

Several challenges were observed while formulating the deformation process. For 

example, often, a situation occurs where a secondary landmark gets closer to a region of 
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the target surface that is different from its parent region, and therefore, the surface distance 

force pulls the concerned landmark in a wrong direction. A weak surface-distance force 

fails to pull the landmark mesh on to the target surface, while a strong surface-distance 

force prematurely pulls individual landmarks and arrests any further deformation under the 

spring mesh. Topology violation of the landmark mesh is another major concern during the 

deformation process. In the following, we describe our geodesic deformation method that 

overcomes these challenges.  

 

Figure 4. Display of affine transformation result. (a) The result of affine transformation of 

the reference landmark mesh on a target training bone surface. The fiducial and secondary 

landmarks on the reference training shape after affine transformation are shown in red and 

blue, respectively, while the fiducial landmarks on the target bone surface are shown in 

gold. The target bone surface is displayed with partial transparency. Note that the target 

shape only has the fiducial landmarks. (b) Same as (a) except that the landmarks of only 

two disjoint regions are shown for better visualization. 
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Let 𝐟"(0) denote a reference fiducial landmark after affine transform and 𝐟"̇	 denote 

its location on the target shape surface. We use 𝐟"(𝑡) to denote the location of 𝐟"(⋅) during 

the deformation process. The entire deformation process is accomplished in two phases.  

During the first phase, each fiducial landmark 𝐟"(𝑡) is gradually moved toward its 

target location 𝐟"̇	. Specifically, during an iteration of this phase, 𝐟"(𝑡) is moved to 𝐟"(𝑡) +

E	𝐟"̇ − 𝐟"(𝑡)G /𝑛I, where 𝑛I is the number of iterations for the first phase. After moving all 

fiducial landmarks during each iteration, the secondary landmarks are allowed to move and 

stabilize. During the deformation of secondary landmarks, both spring-mesh and surface-

distance forces are applied. To overcome the first challenge mentioned in the previous 

page, different regions of the target bone surface are segmented using the minimum cost 

geodesic paths on the target bone surface through fiducial landmarks, and it is ensured that 

a secondary landmark is only pulled toward its parent region. A concept of ‘cushion’ is 

introduced in the formulation of surface-distance force to ensure that, during early stages 

of deformation, the landmark mesh can glide under spring mesh force inside the ‘cushion 

zone,’ while surface-distance force ensures that landmarks do not move far from the 

cushion zone.  

During the second phase of the deformation, the cushion value is gradually reduced 

pulling the landmarks on to the target surface, while escaping a premature halt of spring 

deformation due to seizure of a landmark on the discrete target surface mesh.  

In the following subsections, different forces are defined for the elastic deformation 

model and the conditions for topology preservation during deformation are demonstrated 

in detail. 
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2.3.1 Spring Force 

The landmark mesh is modelled as a spring mesh system, where each edge 

represents a spring and each triangle represents an elastic surface that tends to maintain its 

original area. After the affine transformation of the reference landmark mesh, spring mesh 

is considered to be at its relaxed state. As the fiducial landmarks start moving, it perturbs 

the relaxed state.  

Here, we use 𝑡 to denote a time variable and 𝑡 = 0 right after the affine 

transformation of the reference landmark mesh. Let 𝐬(𝑡) denote the current location of a 

secondary landmark, and let 𝐬"(⋅)|	𝑖 = 1,2,⋯ ,𝑚 be the neighboring landmarks (fiducial or 

secondary) of 𝐬(⋅), i.e., each 𝐬"(⋅)	is directly connected to 𝐬(⋅) by an edge denoted as 𝐬𝐬"(⋅

). The total edge spring force on the secondary landmark 𝐬(𝑡) is defined as follows:  

𝐅QRSQ(𝐬, 𝑡) = 𝑘QRSQU
|𝐬𝐬"(𝑡)| − |𝐬𝐬"(0)|

|𝐬𝐬"(0)|

V

"W(

𝐢𝐬𝐬<(Y), (1) 

where 𝑘 is a spring constant and 𝐢𝐬𝐬<(Y) is the unit vector from 𝐬(𝑡) to 𝐬"(𝑡). 

Also, each triangle, say 𝐴"	|	𝑖 = 1,2,… , 𝑙, sharing the vertex 𝐬(𝑡) asserts an area-

defined force on 𝐬(𝑡); let 𝑎"(𝑡) denote the area of 𝐴" at 𝑡 and 𝐢𝐬]<(Y) denote the unit vector 

along the inner angular bisector of 𝐴" at its vertex 𝐬(𝑡). The total area based elastic force 

on 𝐬(𝑡) is defined as follows: 

𝐅 _Q^(𝐬, 𝑡) = 𝑘^_Q^U
𝑎"(𝑡) − 𝑎"(0)

𝑎"(0)
𝐢𝐬]<(Y)

3

"W(

(2) 

Finally, the total spring force on 𝐬(𝑡) is computed by adding both edge- and area-

based forces as follows: 

𝐅 a_bcS(𝐬, 𝑡) = 𝐅QRSQ(𝐬, 𝑡) + 𝐅 _Q^(𝐬, 𝑡) (3) 
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2.3.2 Surface-Distance Force 

A surface-distance force is applied on each secondary landmark to pull it on to the 

target bone surface. This force is defined by the distance between the landmark and the 

target surface. Let 𝑃(𝐬(𝑡)) denote the projected point of the moving secondary landmark 

𝐬(𝑡) on its parent region 𝑅 in the target bone surface. The target surface is computationally 

represented as a discrete triangular mesh and the point 𝑃(𝐬(𝑡)) is always projected at a 

vertex of the mesh. It introduces a discrete nature in the spring mesh deformation, 

especially, when the surface distance force is strong. Specifically, it stops a spring mesh to 

deform under the spring force system along the target surface. To overcome this challenge, 

we introduce a notion of cushion to simulate a surface-distance force-free zone around the 

target surface so that spring mesh can freely deform inside the cushion zone. The magnitude 

of the surface-distance force is defined as follows: 

𝐅surface-distance(𝐬, 𝑡) = 𝑘surface-distance × 𝑓t%𝐷%𝐬(𝑡)- − 𝑐-, (4) 

where, 𝑘surface-distance is the surface-distance force constant; 𝑓t(⋅)	 is a function that returns 

the input value when it is positive and zero otherwise; 𝐷%𝐬(𝑡)- computes the distance 

between the landmark 𝐬(𝑡) and its parent region 𝑅 on the target surface; and 𝑐 is the cushion 

parameter. 

The orientation of the surface-distance force is defined so that the force applied 

along the inward or outward normal of the spring mesh surface toward reducing the 

distance between the landmark and its parent surface region on the training shape. 

However, it is difficult to define the surface normal for a mesh surface. Therefore, we use 

the unit vector 𝐢𝐬(Y) from 𝐬(𝑡) to the center of gravity of the neighbors. Let 𝐬",(𝑡)|	𝑖 =

1,2,⋯ ,𝑚 denote the neighbors of 𝐬(𝑡). Let 	x̂𝐬(Y) denote the unit vector from 𝐬(𝑡) to the 
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nearest point on its parent region 𝑅. Finally, the direction of the surface-distance force 

𝐅surface-distance(𝐬, 𝑡) is used as 𝐢𝐬(Y) or -𝐢𝐬(Y) depending on the sign of the inner product of 

𝐢𝐬(Y) and 	x̂𝐬(Y). If it’s positive, the direction of 𝐅surface-distance(𝐬, 𝑡) is the same as 𝐢𝐬(Y). 

Otherwise, it’s in the reverse direction of 𝐢𝐬(Y). 

Finally, the total force on a secondary landmark 𝐬(𝑡) is defined as follows:  

𝐅total(𝐬, 𝑡) = 𝐅spring(𝐬, 𝑡) + 𝐅surface-distance(𝐬, 𝑡)
																																										= 𝐅edge(𝐬, 𝑡) + 𝐅area(𝐬, 𝑡) +	𝐅surface-distance(𝐬, 𝑡). (5) 

2.3.3 Topology Preservation Constraints 

During the deformation process it is necessary to constantly check that the mesh 

topology is not violated. During a mesh deformation a topology is violated when two 

independent mesh structures intersect each other. Two mesh structures are independent if 

their intersection is empty, i.e., they share no common structure. Different cases of 

topology violations may occur — (1) a vertex intersects an independent vertex, edge or 

triangle, which are shown in Figure 5(a)-(c); and (2) an edge cuts through another 

independent edge or triangle. Topology violations caused by a vertex intersecting an 

independent mesh element are easy to visualize. An example of topology violation, where 

an edge cuts through another independent edge is shown in Figure 5(d). 

To avoid topological violations during mesh deformation, it is ensured that two 

independent mesh structures never come too close. Specifically, to check that a vertex 𝑣 

(or, an edge 𝐸) does not come to the vicinity of another independent mesh structure, for 

each mesh triangle 𝑇, it’s necessary to check the following two conditions: (1) The distance 

between 𝑣 (or, 𝐸) and the plane 𝑃� containing 𝑇 is larger than 𝛿, and (2) the projection 𝑣� 

(or, 𝐸�) of 𝑣 (respectively, 𝐸) on 𝑃� is more that 𝛿 distance away from 𝑇. 
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A sufficiently small movement of 𝑣 does not cause mesh topology violation with 

respect to a triangle 𝑇 and the edge and vertices of 𝑇, if any of the above two conditions 

holds for 𝑣 and all edges connected to 𝑣. The distance threshold should be significantly 

greater than individual movement steps of mesh vertices. Since, the spring mesh 

deformation is defined by a force model, the possible movements of individual vertices 

may cover a wide range of distances. Therefore, the following strategy is adopted.  

First, the displacement vector 𝐝 of a given vertex 𝑣 during an iteration is determined 

using the underlying force model. The application of computed displacement 𝐝 on 𝑣 is 

accomplished in ⌈|𝐝|/𝛿𝐝⌉ number of sub-iterations, where ⌈⋅⌉ is the ceiling operator; 𝛿𝐝 ≪

𝛿 is the constant micro-displacement length applied during each sub-iteration. During each 

sub-iteration, a displacement of 𝛿𝐝𝐝/|𝐝| is applied on the vertex 𝑣 under the constraint of 

topology preservation.  

Topology preservation checking is applied at each sub-iteration, and it involves 

significant computation with all mesh triangles, which is a large number; for example, the 

landmark mesh used for our experiments had 1712 mesh triangles. Therefore, an efficient 

implementation of topology preservation is needed to practically solve the deformation 

process. In our algorithm, a data structure is created to keep track of the set of independent 

mesh tringles spatially nearby to a specific vertex. Also, we keep track of cumulative 

displacements for each vertex since the last update of its nearby tringle data structure. 

Finally, this data structure for a specific vertex is updated after its cumulative displacement 

exceeds a threshold. 
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Figure 5. Different cases of topology violation. (a-c) A vertex 𝐬 of triangle 𝑇 locates inside 

the face, on an edge, at a vertex of a triangle 𝑇′ respectively. (d) An example where an edge 

(𝐬𝐬") cuts through another independent edge to trigger a topology violation. Visible edges 

are shown in black while invisible edges are shown in light gray. The vertex 𝐬" is on the 

other side of the independent triangle through which the edge 𝐬𝐬" intersects and is not 

visible. It may be noted that both vertices 𝐬 and 𝐬" may be significantly far from the 

intersection triangle, and therefore, may not be detected using the first condition of 

topology preservation. It may be noted that such case of topology violation is not frequent 

and easy to be overlooked. 
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2.4 Development of Active Shape Model 

Following the framework proposed by Cootes and Taylor ([33]), the mean and 

variation in an anatomic shape can be computed after eliminating the pose variations among 

training shapes through the Procrustes method and then performing a principal component 

analysis (PCA) to capture the nonlinear shape variation among training shapes. Let us 

assume that the shape of a bone surface is represented by 𝑁 landmarks. Thus, a femur shape 

requires a 3𝑁 dimensional vector and an active shape model of a femur is expressed by the 

following equation: 

𝐚 = 𝛍 + P𝐛, (5) 

where 𝐚 is a shape instance; 𝛍 is the mean shape; P is a matrix of 𝑘 eigenvectors 

corresponding to the 𝑘 largest eigenvalues computed using the PCA of training shapes after 

eliminate pose variations using the Procrustes method; and 𝐛 is a 𝑘 dimensional vector 

representing the shape-control parameters.  

2.5 Shape Optimization on a Segmented Femur Bone Surface 

 The compute the optimum shape instance from an ASM to fit the surface of 

segmented proximal femur bone from a MR image, an image search method has been 

developed that is based on the principle originally proposed by Cootes and Taylor [33]. 

This method starts with the mean shape, i.e., the shape parameter 𝐛 = 𝟎 and an initial set 

of pose parameters orientation (azimuth and elevation) 𝛉, scale 𝑠, and translation 𝐓�. Then, 

it iteratively update the shape instance using the following steps – (1) determine the next 

possible landmark locations based on image information, (2) modify the linear pose 

parameters to best accommodate the new landmark locations, and (3) revise the nonlinear 
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shape parameters to best accommodate the new landmark locations after adjustment of 

pose parameters. These iterations are continued until convergence.  

 In this thesis, a method based on distance transform has been developed to help find 

the next possible locations for landmarks during an iteration. Specifically, the method 

computes the distance transform as follows. Let 𝑉 denote the segmented femur bone 

volume and 𝑉� = 𝑍� − 𝑉, where 𝑍� is the image space denote the background. For each 

voxel 𝑝 ∈ 𝑉, the distance transform value 𝐷𝑇(𝑝) is computed as the minimum distance of 

𝑝 from 𝑉� , while each voxel 𝑝 ∈ 𝑉� , the distance transform value 𝐷𝑇(𝑝) is computed as the 

minimum distance of 𝑝 from 𝑉. Thus the computed distance transform field has small 

values near the femur bone surface and higher values as moved farther from the surface. 

This distance field is used to determine the next possible landmark locations during an 

iteration. Specifically, a landmark location 𝐬 is moved to the image voxel location in the 

3 × 3 × 3 neighborhood of 𝐬 with the smallest distance transform value. In other words, 

the next location of 𝐬 is moved closer to the femur surface boundary. Subsequently, the 

proposed method by Cootes ([33]) are used to update the pose and shape parameters during 

an iteration. The process terminates when the average square sum of distance transform 

values at landmark locations converges.  
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CHAPTER 3 
EXPERIMENTS  

The elastic deformation method was applied on hip MR scans of 45 post-

menopausal women to achieve the secondary landmark locations, as well as the topology 

information for all shapes. Second, an ASM was built based on all landmark meshes and 

tested using leave-one-out strategy. Finally, the ASM built in previous step will be applied 

to search the shape in image-frame space.  

3.1 MR Imaging and Subject Description 

MR imaging of 45 postmenopausal women were collected at the New York 

University. This study had institutional review board approval and was Health Insurance 

Portability and Accountability Act (HIPAA)–compliant. Written informed consent was 

obtained from all subjects. From the osteoporosis center at the New York, 45 

postmenopausal women were recruited who had femoral neck or total hip BMD T scores 

of greater than -2.5 (median age: 65.0 years; interquartile range [IQR]: 57.0–70.0 years; 

median body mass index: 23.2 kg/m2; IQR: 20.9–26.2 kg/m2). ([45]) 

All subjects were scanned in feet-first supine position on a 3-T MR imager (Skyra; 

Siemens, Erlangen, Germany) by using a 26-element radiofrequency coil setup (three rows 

of six elements from the Siemens commercial flexible array coil, two rows of four elements 

from the Siemens commercial spine coil) to detect the MR signal ([46]). Data from 

individual coil elements were combined by using the sum-of-squares method. Multichannel 

arrays are known to provide higher signal-to-noise ratios, which can be used to decrease 

image voxel size (i.e., increase spatial resolution of the image) and improve image quality 

([47], [48]). We acquired high-spatial-resolution images of bone microarchitecture of the 

entire proximal femur in a slightly oblique coronal plane parallel to the femoral neck by 
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using a three-dimensional fast low-angle shot sequence (repetition time msec/echo time 

msec, 31/4.92; flip angle, 25°; matrix, 512 × 512; field of view, 120 mm; in-plane voxel 

size, 0.234 × 0.234 mm; section thickness, 1.5 mm; number of coronal sections, 60; 

acquisition time, 25 minutes 30 seconds; bandwidth, 200 Hz/pixel) similar to that used in 

prior studies performed at peripheral skeletal sites ([49], [50], [51]). 

3.2 Results of Deformation 

A few examples of landmark mesh for different femur bone shapes are displayed in 

Figure 6. The bones shapes are similar in the whole while differences exist in certain 

regions. The results of secondary landmark generation were visually satisfactory, well 

capturing the features of individual shapes, and no topology violation or notable artifacts 

were observed.  

 

Figure 6. Examples of deformation results. Red points denote fiducial landmarks, while 

blue points represent secondary landmarks. All edges are marked in green.  

Results of intermediate steps of secondary landmark generation on a target training 

shape at different cushion values of FDT-based surface force are shown in Figure 7. The 

gradual change in the cushion value of the surface distance transform slowly pulls the 

(a) (b) (c)
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secondary surface mesh on to the target surface without adding any distortion artifacts in 

the deformed landmark mesh.  

 

Figure 7. Results of intermediate steps of secondary landmark mesh deformation on a target 

training shape using spring and surface distance forces. (a-e) Deformation results at 

cushion values of 1.5, 1.0, 0.5, 0.25, and 0.0, respectively, for the surface distance force. 

3.3 Validation of ASM 

The landmark representations of all 45 training shapes were used to generate an 

MRI-based shape model of human proximal femur bone. The PCA of the vector 

representations of the 45 landmark shapes were performed after affine alignment of the 

shape using the Procrustes method to eliminate linear pose variation as suggested by Cootes 

et al. ([33]) A total of nineteen effective eigenvectors or shape variation modes 

corresponding to the largest nineteen eigenvalues were selected to define the MRI-based 

(a) (b)

(c) (d) (e)



www.manaraa.com

 

 

24 

human femur shape model, see Figure 8. Variations of femur shapes due to the changes in 

the first three shape modes are illustrated in Figure 9.  

 

Figure 8. Variation Energy Distribution. The orange curve represents the individual energy, 

while the blue curve represents the cumulative energy.  
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Figure 9. Variations in MRI-based human femur shapes by changing the shape-control 

parameter along the first three shape modes. The rows from the top represent shape 

variation due to changes in the 1st, 2nd, and 3rd major shape modes or eigenvectors. On 

each row, the figures represent the shape instances of mean shape varying at -3, -1,0,1, and 

3 times eigenvalue for the corresponding eigenvector. 

To test the effectiveness of the computed femur shape model, a leave-one-out test 

was conducted, and an error analysis was performed as described in the following. Let 

𝛂(, 𝛂2,⋯ , 𝛂�� denote the 45 training shape vectors derived from the 45 MR images used 

in our experiment. For the leave-one-out test, 45 different leave-one-out active shape 

models 𝐴𝑆𝑀(, 𝐴𝑆𝑀2,⋯ ,𝐴𝑆𝑀�� were computed, i.e., 𝐴𝑆𝑀" was computed from the 44 

training shapes 𝛂(, 𝛂2,⋯ , 𝛂b�(, 𝛂bt(,⋯ , 𝛂�� excluding the training shape instance 𝛂". The 

best-fit representing of 𝛂" captured by 𝐴𝑆𝑀" was computed by finding the nearest point 
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projection 𝛂"′ of 𝛂" on to the shape subspace of 𝐴𝑆𝑀" represented by its shape matrix after 

adjusting for the linear pose variation of 𝛂"; let 𝛂"   denote the linear pose adjusted 

representation of 𝛂". Finally, the error of 𝐴𝑆𝑀" in capturing the shape instance 𝛂" was 

computed as the Euclidean distance between 𝛂"′ and 𝛂"   in the 3𝑁 dimensional shape space; 

note that 𝑁 is the total number three-dimensional landmarks used to represent a femur 

shape. The max values of the shape representation errors observed in the leave-one-out test 

was 2.48 mm, while the mean and standard deviation of errors were 1.40 mm and 0.37 mm, 

respectively.  

Another validation experiment was performed to evaluate the performance of the 

computed ASM to fit with a segmented femur bone surface in an image voxel grid 

representation. Again, a leave-one-out test was conducted similar to the one described in 

the previous paragraph. The performance measure or matching error was computed as the 

average distance transform value at optimized ASM landmark locations from the femur 

bone surface. Three examples of ASM fitting on the target femur bone surface with low, 

medium and high matching errors are shown in Figure 10. The statistical analysis shows 

that the mean distance of optimized shape instances to corresponding femur bone boundary 

is 0.577 mm and the standard deviation is 0.236 mm. As described in Chapter 4, my future 

research will be to further optimize the algorithm for shape instance fitting for a target bone 

surface in the voxel grid without any prior indication of landmarks.   
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Figure 10. Examples of optimized ASM fitting on the image voxel representation of target 

femur bone surfaces. Left-to-right: Examples with low (0.270 mm), medium (0.577 mm) 

and high (1.155 mm) matching errors. Top-row: Three-dimensional surface renditions with 

high transparency for voxel surface. Bottom-row: Three-dimensional surface renditions 

with high transparency for landmark mesh surface. 
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CHAPTER 4 
CONCLUSION  

An MRI-based shape model of the human femur bone has been developed. The 

framework of fiducial and secondary landmark allows reliable computation of statistical 

shape models for complex 3-D anatomic structures. Automatic generation of secondary 

landmarks using the correspondence of fiducial landmarks and the geodesic elastic 

deformation of landmark mesh is feasible, and it effectively improves the efficiency as well 

as the anatomic spatial correspondence of landmarks among individual training shapes. 

The notion of cushion values in surface-distance force computation allows to gradually pull 

the secondary landmark mesh on to the target femur bone surface while avoiding any 

geometric distortion of secondary landmark mesh caused by premature pulling of a 

landmark on to the target surface and arresting any future deformation of the associated 

mesh. Also, a novel morphological smoothing algorithm is presented to effectively smooth 

a femur bone surface reducing digital stair case artifacts caused by relative low resolution 

of femur bone MRI. Currently, we are advancing this method to automatically generate 

target regions of interest in individual femur bone shapes. This application will largely 

reduce expert human time and subjectivity errors in cross-sectional and longitudinal 

studies.  

Long Term Research Goals and Future Directions 

Over the last several decades, our laboratory has been working on basic and 

translational research related to quantitative imaging for bone density, geometry, and 

micro-architecture ([13], [20]–[23], [25], [26], [28]–[32], [38], [52]–[63]). These research 

works led the developments of several seminal technologies including digital topological 

analysis, fuzzy distance approach, tensor scale, which are widely used in bone micro-
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structural imaging research ([8], [10], [11], [27], [45], [64]–[82]). The long-term objectives 

of this research program are two-fold – (1) use ASM based surface landmark 

correspondence to develop a volumetric deformation process establishing the mapping of 

a specific femur bone volume onto a mean anatomic space and (2) use ASM to 

automatically segment the femur bone volume in hip MRI. The first goal will play crucial 

roles in transverse and longitudinal studies to define anatomically consistent regions of 

interest (ROIs) for computation of summary measurements. The second goal will reduce 

expert time and eliminate user-dependent subjective errors in the target bone segmentation. 

Finally, research efforts will be dedicated to further improve the algorithm for shape 

optimization on a segmented femur bone surface from a pre-computed ASM. 
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